
DOCUMENT CONTROL DATA - R & D
-Security assiicatin of itle. body sf abstract a-d idex,;A sannsfo -I n u, I e-nt.d hn, the ovea l… r I… -I… ?_…

I ~OR IGINA T ING AC IVIT Y (Copote author) 2.R P P E U ITY CLASSI FICATION

Naval Research Laboratory Unclassified
Washington, D. C. 20375 2b. GROUP

3. REPORT TI TL E

A STUDY OF FLUID-STRUCTURE INTERACTION AND DECOUPLING
APPROXIMATIONS

4. DESCRIPTIVE NOTES(7ofpofrptndinclusive dates)

Interim report on one phase of the problem; work is continuing on other phases.
S. AU THOR(S) (First me, middl ifitl, (a-t -ame)

Alfred V. Clark, Jr.

6. REPORT DATE 7. TOTAL NO. OF PAGES 7b. NO. OF REFS

December 21, 1973 30
B8. CONTRACT OR GRANT NO. 9. ORIGINATOR'S REPORT NUMBER(S)

NRL Problem F02-12.504
b. PROJECT NO. NRL Report 7590
Project NB-002-14

c. 9b. OTHER REPORT NO(S) (Any other nRmber thst ay be -ssign-d
thi. report)

d.

10. DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited.

II. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Department of Defense
(Defense Nuclear Agency)
Washington, D.C 20305

To analyze the effect of an underwater explosion on submarine appendages, it is necessary
to account for the presence of the surrounding fluid. One of the pressure loadings exerted by
the fluid on the appendage will be due to its motion through the fluid. For most bodies, it is
difficult to compute the resultant force due to this fluid loading.

The force exerted on an object moving in an acoustic medium can be related to its accel-
eration through a convolution integral; the kernel of this integral represents the impulsive force
X(t) which results when the body is given a step velocity change. The sphere is one of the few
geometries for which an analytic expression for this impulsive pressure exists. For more com-
plicated bodies, various approximations for (t) have been proposed, based on its known as-
symptotic early and late time behavior.

One possible method of generating these approximations is developed and applied to the
special case of a rigid, oscillating sphere elastically connected to a fixed base. The sphere is
subjected to an impulse and its resultant motion is computed using both the exact and approxi-
mate form of (t). It is found that good agreement exists between the exact and approximate
time histories of sphere motion for high frequencies at early times and for low frequencies at
late times. The usual assumption of early time radiation gives poor results at low frequencies.
Physical and mathematical interpretations of the effect of fluid pressure on oscillator motion
is given.

D D ,FORM 1473 (PA GE 1) PLATE NO. 21856DD FORM 47 (PAGE I ) PLATE NO. 21856010-NOV 650
S/N 0102-014-6600 Security Classification

Se-'it� rI-'ifi'.H-

27



S-,rity Classification
v14 r ..... ....... ................. LINK A LINK LINK C

KEY WORDS ROLE WT ROLE WT ROLE WT

Vibration of submerged structures
Fluid-structural interaction
Fluid-structure decoupling approximation

Radiation pressure
Acoustic radiator
Acoustic transients
Impulsive pressure

Added mass

fl l FORM..( A KDD | NOVE 1473 (BACK)
(PAGE 2)

- . - i - . - - i -

Security Classification28



CONTENTS

Abstract ............................ ............... ii
Problem Status ............... ii
Authorization .................................. ii
INTRODUCTION .............. 1

EXACT SOLUTION ............... 3

APPROXIMATE SOLUTION .............. 13

COMPARISON OF EXACT AND APPROXIMATE
SOLUTIONS ............... 16

ASYMPTOTIC FORMS OF CONVOLUTION INTEGRAL . 18

DIFFERENTIAL EQUATION APPROACH .19

CONCLUSIONS .20

APPENDIX A-Approximation to Hydrodynamic
Function X(t)................................... 22

APPENDIX B-Tables of Constants Used in Exact and
Approximate Solutions .24

i



ABSTRACT

To analyze the effect of an underwater explosion on submarine
appendages, it is necessary to account for the presence of the sur-
rounding fluid. One of the pressure loadings exerted by the fluid on
the appendage will be due to its motion through the fluid. For most
bodies, it is difficult to compute the resultant force due to this fluid
loading.

The force exerted on an object moving in an acoustic medium
can be related to its acceleration through a convolution integral; the
kernel of this integral represents the impulsive force (t) which re-
sults when the body is given a step velocity change. The sphere is one
of the few geometries for which an analytic expression for this im-
pulsive pressure exists. For more complicated bodies, various
approximations for (t) have been proposed, based on its known
asymptotic early and late time behavior.

One possible method of generating these approximations is
developed and applied to the special case of a rigid, oscillating sphere
elastically connected to a fixed base. The sphere is subjected to an
impulse and its resultant motion is computed using both the exact
and approximate form of X (t). It is found that good agreement exists
between the exact and approximate time histories of sphere motion
for high frequencies at early times and for low frequencies at late
times. The usual assumption of early time radiation gives poor results
at low frequencies. Physical and mathematical interpretations of the
effect of fluid pressure on oscillator motion are given.
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A STUDY OF FLUID-STRUCTURE INTERACTION
AND DECOUPLING APPROXIMATIONS

INTRODUCTION

Recently there has been much interest in the problem of analyzing the effect of an
underwater explosion on exposed submarine appendages such as rudders, sail, etc. To
adequately model the physical problem, it is necessary to account for the effect of the
fluid on the appendage.

When a submerged structure is subjected to an underwater explosion, it experiences
three types of pressure loadings over its surface. There is a loading from the free-field
pressure and one from the scattered pressure; in computing the scattered pressure, the
structure is considered rigid and immovable. The third pressure, called the radiation
pressure, results from motion of the structure through the fluid.

The radiation pressure loading is a consequence of fluid-structural interaction; for
realistic structures, it is difficult to compute. In this report, we attempt to illustrate
some of the main features of this interaction by a simple mathematical model, with the
idea of generating some approximate methods to account for fluid-structural interaction
for complicated structural geometries.

The pressure on the surface of a submerged, moving body can be related to body
motion by an equation of the form*

P(r, t) = f z(r, t - r) (T) d, (1)
r=0

where

r represents a point on the surface of the body

P(r, t) is surface pressure

w(r, t) is displacement of body along outward normal

¢(r) is a deflection pattern

x(t) is a normal coordinate

w(r, t) = x(t) ¢(r).

*Symbols will be defined as they appear in the text.
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ALFRED V. CLARK, JR.

We note that z(r, t) is proportional to the surface pressure which results when the body
is given a step velocity change in deflection pattern (r), i.e., (r, t) = 0 0(r)J(t) where
J(t) is the Heaviside step function. Except for some simple geometries, we do not have
analytic expressions for z(r, t); however, even for complicated geometries, we can generate
approximations which give us early time radiation and late time added mass behavior.
One possible way of constructing these approximations is outlined in Appendix A.

The oscillating rigid sphere is a geometry for which we have an exact solution for
z(r, t).* Physically, this solution is a decaying sinusoid with decay constant and period
proportional to the time for a sound wave to travel around the perimeter of the sphere.
Similar results hold for more complicated bodies;* however, for these bodies, determining
the exact form of z(r, t) involves the inversion of a complicated Fourier transform. Since
z(r, t) for the sphere embodies the main physical features we would obtain for the more
complicated geometries, we can gain some insight into the more general problem of an
oscillating finite body by considering the solution for the sphere.

We will consider the following problem. A rigid sphere is connected to a fixed base
by an elastic spring and set in motion by an impulse (see Fig. 1). The effect of fluid
loading on the sphere is expressed via the convolution integral above. By generating an
approximation to z(r, t), we obtain an approximate solution for motion of the sphere;
this is to be compared with the exact solution. We discover that our particular approxi-
mation (one of many we could have chosen) gives us good results for early times at high
frequencies and for late times at low frequencies.

Io8(t)

FLUID
T m r RIGID SPHERE

X

FIXED BASE E

ELASTIC SPRING

Fig. 1 -Rigid sphere immersed in acoustic fluid and coupled
to a fixed base through an elastic element

For the sphere, we find that high frequencies are those for which co << , with
w, being the frequency of z(r, t) and o the oscillator frequency in vacuo. Thus, a high-
frequency, early time case is one in which the oscillator goes through many cycles while
the impulsive pressure z(r, t) is essentially constant. The low-frequency, late time case
corresponds to the oscillator slowly responding while the impulsive pressure is rapidly
decaying, with decay constant and equal to col, and cl >> wo.

*M. C. Junger and W. Thompson, J. Acoust. Soc. Amer. 38, 978-986 (1965).
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Interestingly enough, the form of z (r, t) for a sphere has been proposed as an approx-
imation to the impulsive pressure for more complicated bodies, We also choose as our
approximation to z(r, t) a one-dimensional version of an approximate impulsive pressure
form proposed by Geerst

EXACT SOLUTION

Consider a submerged sphere connected to a rigid base by means of a spring. The
sphere is given an impulse at t - 0, and we determine its resulting motion from the
equation

m + x -Ft + o (t), (1)

where

m mass of sphere

x displacement of sphere

k = stiffness of spring

ft fluid force on sphere

1 - impulse

6 (t) Dirac delta function

We assume zero initial conditionss Obviously, we need the value of Pt to specify the
problem completely.

For an arbitrary body in motion through an acoustic medium, we know that the
pressure field generated by the motion of the body satisfies the wave equation

V ~ P(2)

where sound speed in medlum, Further, on the surface of the body, continuity and
momentum considerations require that an -13iU,(3)
where

n outward normal to body

p fluid density

w displacement of body along its outward normal,

*T. UPPY, J Aouit. Soc. Aner 4, 1h06-151O (1071).
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Taking the Laplace transform of the wave equation (for zero initial conditions) and
using the boundary conditions enable us to form the Helmholtz integral equation

if P(ro, s) a
ff 47r ano

(e(s/c)Ir -ro|\

Ir - r do0

2v ui (ro, ) e(sIc)1I-rol
= ps 2 IJf 4r Ir-rol do *

0o

Here r represents a field point on the surface of the body, r is a source point, and a0
represents a surface area element, as shown in Fig. 2.

a (BODY SURFACE)

Fig. 2-Defines quantities used in Eq. (4)

The solution to this integral equation has the form

P(r, s) = s2 f H(r, r; s) w (ro, s) duo .
CFO

(5)

Where H(r, ro; s) has units of mass/length 4 . Taking the inverse transform via the con-
volution theorem yields

P(r, t) = f [ f H(r, r; t - ) i (ro, ) doo] d. -

For an oscillating rigid sphere, acceleration along the outward normal is given by
ii(r, t) = i(t) cos 0; here 0 is the angle measured from the direction of motion, as shown
in Fig. 3.

SPHERE

Fig. 3-Defines angle 0

2 P(r,s) -

4)

(6)
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Then we have

t
P(r, t) = fT

r=O

x(t - r) ff H(r, ro; r) cos 0 do dr .

Let us denote the surface integral by z(r, r). We claim that the quantity z(r, t) is pro-
portional to the surface pressure when the sphere is given a step velocity change at t = 0;
i.e., i(r, t) = U0 6 (t) cos 0. By direct substitution,

t
PS(r, t) = f

0

U0 (t- r) z(r, r) dr = Uo z(r, t),

P6(r, t)
z(r, t) =U

The surface pressure for a velocity step has been calculated as*

P6 (r, t) = pc U0 e-lt cos Cwlt cos 0,

where w1 = c/a, a = radius of sphere. Consequently, we have

z(r, t) = pc e 1 t cos t cos 0 .

The work done by the fluid acting over the surface of the sphere is expressed by

W = - .#P(r, t) w(r, t) do,
a

with a corresponding generalized force

Ff(t) = W =_
ax fP(r, t) cos 0 do,

since w(r, t) = x(t) cos 0:. It is found that

Ff(t) = -ft
T0

where

X(t) = ffz(r, t) cos 0 do .
a

*M. C. Junger and W. J. Thompson, J. Acoust. Soc. Amer. 38, 978-986 (1965).

(7)

or

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

5
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Direct computation gives us the value of X (t) as

X(t) = 4 ra2 pc e-Ot cos Wlt.

As a consequence, we can write our equation of motion in the form

t

mx + kx = - 7raap 
3 2 O

x(t r) e w t cos w1rdr + I8 kt).

Laplace transform for zero initial conditions and using dimensionless variables

RW2(W8+ W1 IWO X(8) 
2 + I0

+ no (w1/jO)2

with
WA,2 = k/m

R 47ra2pe/(3mwo)

T = 0 1(mawo).

We note that R is a measure of the coupling between the sphere and fluid, and can be

interpreted in several ways. If we note that pc has the dimensions of impedance/area,
then the quantity (4/3)irapc is the impedance (for early times) of an unbaffled piston

with total surface area equal to 2/3 of the surface area of the sphere. The quantity mw 0

is the impedance of the sphere and spring system in vacuo, Hence, R is the ratio of the

fluid impedance to the oscillator impedance in vacuo.

We can also rewrite

, am I \ z&/ t i W K0/ I
(19)

where nw Mt mass of water displaced by sphere. We note that a/c 1/)l (2ir)= 1 X tine

for a "creeping wave" to progress around the sphere; 1o = (2r) X period of oscillation

in vacuo. In another form,

R r\ / MO (20)

where

(16)

Taking the
gives us

(17)

(18)

6
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To = period of oscillation in vacuo

T = 2r/wl.

Returning to the transformed equation of motion, we put it in the form

x~= ____________[(g+E)2 + E2 (21)

[(2 + 1) [(s + )2 + 2] + 2 (m) e(+ e)]

where e = wj/Wo and R = (mw/m) e.

The above equation can be rewritten as

= OS) io[(S+e)2 + e2l (22)

(s1s) 0i- 2) ( - 3) (W- 4)

where sj through Z4 are roots of the denominator; i.e., they are roots of

(S2+1)[(s+e)2 + e2] + s2(MW) e(s+e) = 0. (23)

In the domain, large values of the transform variable s correspond to solutions
valid for the initial stages of oscillator motion, and small values of correspond to much
later times. Solutions associated with large will be called early time solutions, or Xe;
those associated with small will be called late time solutions, or XI. It is insufficient
to say that is "large" or "small"; we must compare it with some dimensionless quantity.
The asymptotic values of W will depend upon the frequency ratio e as shown in Table 1.
This table defines early and late times depending on frequency ratio.

Table 1
Dependency of Early and Late Times on Frequency

Time Low Frequencies High FrequenciesTme(e >> 1, or 1>> wo) (E<< 1, or << w0 )

Early{ >> 1; Xe >> Xl >> e; e >> I

Late { << e;3Xe << << 1; e << l

Suppose we look at the low-frequency case where e >> 1 and consider late times;
i.e., << e. Then the quartic Eq. (23) above has the approximate form

(S2 + 1)(2E 2 ) + 2e2( IT = (24)

which gives us the roots

7



8 ALFRED V. CLARK, JR.

1/2
a3,4 = i( i2 )12 ; i = 

Physically, this represents an undamped sinusoidal vibration for low frequencies at late
times. The ratio of this submerged frequency to the in-vacuo frequency is

Wsub / 2 \r/2

2 w 

which shows how the added mass effect lowers the frequency.

Now let us consider the low-frequency case at early times; i.e., e >> 1 and a >> 1.
The quartic becomes approximately

[a2 + (2 +-m) e + (2 + m) e2]j2 = 0, (27)

which has roots*

il,2= 2 {(2 + ) [(2 + !w) - 4 (2 +-m ) 12}- (28)

If the mass of displaced water m, is greater than 2m, then il, 2will be real; this gives
exponentially decaying solutions to the equation of motion at early times. If mw < 2m,
then the sphere will experience damped vibration for early times.

Consider the high-frequency case e << 1, and let us look at late time solutions; i.e.,

i << 1. The quartic reduces tot

s2 + 2e + 2e2 = 0, (29)

or

83,4 = -e ie

we see that late-time solutions correspond to lightly damped, slow oscillations. For early
time solutions, we have (for e << 1 and >> e)

[j2 + es (m) + 1] W2 = 0, (30)

which has roots

*The two spurious roots s = 0, 0 correspond to a trivial solution.
tWe assume that ie[(m /m)] << 1, e2 [(m,/m)] << 1.



81,2 2 ) - ±[e2(m)2 -+ 2 (31)*

Depending on the sign of the discriminant, we can have underdamped, critically damped,
or overdamped solutions. However, since we have stipulated that e << 1, it will take a
large mass ratio m,/m to give us an overdamped solution, even for early times.

Roots for the specific case of mW/m = 2.5 are given in Table B1 of Appendix B.
The early time roots are given as s and S2; late time roots are S3,4. These are in good
agreement with the asymptotic roots listed above.

For the high-frequency cases e = 0.01 and e = 0.1, we have a solution in the form
of two decaying sinusoids:

x(t) =e(t) + x(t)

= )[~e[Q1 sin b1t + Q2 cos bt] + 0b[Q3 sin bt + Q cos b3t] (32)

x = x/a, t = wot

where we have set

sl = al + ibi; W2 = a - ibl

53 = 3 + b3 ; s4 = a3 - ib3

and the constants Q1 through Q are defined in Table B3. Note that a and 3 are
negative. Here xe (t) is the early solution corresponding to roots s1 , 2; 1(t) is the late
solution. This can be verified by noting that the period of e is much less than that
of ..

From Table B, we have the result that as e decreases, the decay constants al and
a3 decrease also; at high frequencies, the oscillator impedance dominates the fluid im-
pedance so that fluid effects become less with decreasing . Further evidence of de-
creasing fluid effect is seen from the fact that the oscillator period approaches the
in-vacuo period as e becomes small.

For the intermediate- (e = 1) and low-frequency cases, we have

x(t) = xe(t) + l(0

Io [ 1
2 + e2] er t IoU[22 + e2] e2t

(a1 - a2)(A1
2 + b3

2) + (a2 - al)(A 2 + b3
2 )

+ b3 [q sin bt + h cos b3t] . (33)

NRL REPORT 7590 9



10 ALFRED V. CLARK, JR.

The coefficients are defined in Table B4. The decaying exponentials in Eq. (33) represent
the early time solution; the late time solution is given by the decaying sinusoids. For in-
creasing e, fluid effects increase the decay constants in the early time solution, shortening
the early time domain (e >> xl). Increasing e causes the period of the late time sinusoids
to increase due to added mass effects.

-Plots of the (dimensionless) displacement x as a function of are shown in Figs. 4-8
for Io = 1. In Figs. 9 and 10, we have plotted the exponentially decaying early time solu-
tion Be (for e = 10 and 100) over the time domain in which it reaches its maximum. On
the same graphs is plotted the oscillatory late time solution xl.* Note the following:

1. The oscillator displacement x is negligible over this time domain (as compared
with its maximum value at late times).

2. The late time solution xl soon becomes greater than the early time solution Xe.

3. Any theory which attempts to use early time radiation damping over this time
domain and neglects added mass effects will be seriously in error.

4. The amount of energy lost to the fluid through radiation damping is negligible,
and it is sufficient to consider only added mass effects for e >> 1. Whether this state-
ment can be made for geometries other than the sphere remains to be demonstrated.

LO X =X/a

0.61-

0.4

0.2

o0 

6= 1oo

EXACT, APPROXIMATE SOLUTIONS
INDISTINGUISHABLE ON THIS
TIME SCALE

0
00

0

0

0 0

0

0.2v 7r 37r 4wr

0
-0.2k-

0

0-0.4 -

0-0.6 _ 0

-0.8 _

-I.0 L_

Fig. 4-Oscillator excursions for exact 0 and approximate 0 solutions (e = 100). (Exact and
approximate solutions are indistinguishable for this value of e.)

*For simplicity, the cosine term is omitted.
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E=10 0 EXACT SOLUTION

e APPROXIMATE

0 0
U

0
a

0

a

0

3v 4v

U

0

U e

-0.8 K

Fig. 5-Oscillator excursions for exact and approximate
X solutions (e = 10)
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0
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0

Fig. 6-Oscillator excursions for exact 0 and approximate
X solutions (e = 1.0)
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e=0.10 0 EXACT

o APPROXIMATE

o EXACT 8 APPROXIMATE

00 

0

2w 0 4w

3w 8 0 
0

0 0

Fig. 7-Oscillator excursions for exact Q and approximate
X solutions (e = 0.10)

0
0 0 *=0.01

EXACT, APPROXIMATE SOLUTIONS
INDISTINGUISHABLE ON THIS
TIME SCALE

0

V

0 0

0 0

2w

0 0

3w 4w

0 0

0 0

Fig. 8-Oscillator excursions for exact 0 and approximate
(0 solutions (e = 0.01)
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6=100

x EARLY TIME EXACT SOLUTION

0 LATE TIME EXACT SOLUTION

27r

t(I0-3) --

Fig. 9-Early and late time exact solutions for e = 100

APPROXIMATE SOLUTION

The sphere is one of the few geometries for which we have an exact solution for the
hydrodynamic function X (t). For more complicated geometries, we can construct ap-
proximations to A(t) based upon its asymptotic early and late time properties. It is in-
structive to examine the quality of some of these approximations for the sphere by
comparing the exact with the approximate solutions.

We require that X (s) possess the following properties:*

00

lim (s) = f
S0 f 0TO

X () dr = m,

where man is the added mass coefficient for the rigid sphere in translation, and

*For the reasons behind this, we refer to Appendix A.

250

NRL REPORT 7590

X(10 5
)

13

0

200-
0

0

150k-

0

0

100H

0 X
X x < 

X

X

X
50 K

10

0.2 7 or

(35)



14 ALFRED V. CLARK, JR.

lim sAX(s) = pc 02 (r)du,
8 -00 f

a

where

w(r,t) = x(t) 0(r).

For the oscillating sphere, (r) = cos 0.

In the time domain, these conditions are equivalent to saying that

lim X(t) = ma 6(t);
t- 00

250 ,

X (10-4)

200 -

lim (t) = J(t) pc 02(r)do
a

0

0 e=10

x EARLY TIME EXACT SOLUTION

O LATE TIME EXACT SOLUTION

0

0

150 I-

0

0

100k-

50k

10

0 X

x

0
X

6

O.:

X
xXX~~

(36)

(37)

27r T 2 r
Too- 2 ) -

Fig. 10-Early and late time exact solutions for e = 10
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where J(t) is the Heaviside step function. We choose

Xa(t) = xe-t , (38)

and satisfying our conditions above will give us the unknown a and 3. As a result, we
have

XaM = e-tlt (39)

where t' = 3 mal(pcA) and A = surface area of sphere.

This value of Xa(t) is substituted into the equation of motion;

mX + kx f ka(t- r)i(r)dr + Io(t) (40)

We take the Laplace transform and cast the equation in the following dimensionless
form:

Io (g + 1it') (41)

+ 1)(g + 1/ ) + 2 m) e

where t' = coot' =[3maw0 /pcA]. We can rewrite this in a more familiar form if we recall
that ma = 2/37ra3p; consequently, t' 0.5/e, and

= ~Io(i'+ 2e) - Io(~+ 2e) (2

(~'2 + 1)( + 2e) + 2 (-m) e D s')(s- s2)(s - $3)

We note in passing that the solution (in the time domain) depends upon the roots of a
cubic in the approximate case, as compared with a quartic in the exact solution. Hence,
using the exponential approximation X,(t) = ax exp (-t/t') generates a third-order equation
of motion, as compared to a fourth-order equation for the exact case, X(t) = a exp (-wjt)x
Cos W1 t.

Let us examine the roots of the cubic for the asymptotic case e >> 1; i.e., for low
frequencies. The late time solution s << e is given by

s2,3 = -i < 1/2'~~~2I 12,(43)

which is exactly what we obtained for the late time, low-frequency case in the exact
solution. For the early time solution, we have » >> 1:

= -(2 + ) ; (44)

15



16 ALFRED V. CLARK, JR.

the corresponding roots for the exact solution are

S1,2 = - + M) ± (2+ m) 4 (2 + mw) ]-

For the
written as

high-frequency case e << 1 and early times » >> e, the cubic can be re-

s2 + e + 1 = 0, (46)

so that

1,2 2 Le ± [ 2(m) 4 (47)*

This is equal to the corresponding set of roots for the exact solution. For the late time
case, we have << 1 and a root 3 = -2e. The corresponding root for the exact solu-
tion is given by 83,4 = -e ± ie.

From the preceding discussion we see that we would expect good agreement between
the exact and approximate solutions for (a) the late time, low-frequency cases, and (b) the
early time, high-frequency cases. We can easily demonstrate the reason for this if we look
at the (dimensionless) forms of X(s) and Xa(s):

(s= (;g ) e ( s + ei+ e2)

Xa( ) = m) _(_+e)2

(48)

(49)

It is easy to verify that

lim X(s) =
e foc

s<< e

lim Xa( )
e c

Z<<e

(low-frequency, late time case)

lim
e )0
Z>> e

\(s) = lim a
e-0
9s>> e

(high-frequency, early time case)

COMPARISON OF EXACT AND APPROXIMATE SOLUTIONS

For the approximate solution, we have, in the low-frequency case

*Valid as long as 2(mw/m) 2 << 4.

(45)

and

(50)

(51)
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ia(t) = e(t) + i(i) =
io ealt

Al 2 + b2
2 (al + 2e) =

(P2A' - b2 2)
I b2 sin b2 t + (A + 2) COS I 

S2 = a2 + ib2

W3 = a 2 - ib 2

'12 = a2 + 2e

A1 = al - a2 -

The closeness of this approximation to the true solution is indicated in Figs. 4 and 5 over

two periods of the oscillator. It can be seen that the late time portions are in good agree-

ment. We note that xa has an early time exponentially-decaying part as well as a decay-
ing oscillatory part.

The approximate solution for high frequencies is

+

Io e'l (Y1 A 3 - b, 2)
A3

2 + b,2 [ bl sin blt + (A3 + j1) COS b 1

+Io e (a3 + 2e) (53)

A 3 + b

where

S1 = a + ib1

S2 al - ibl

83 = a 3

/II = a + 2e

A3 = a3 - a.

Io ea2t

A1 2 + b22

where

(52)

17
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From Figs. 7 and 8 we see that there is good agreement between x and 3a over the
time frame 0 < t < 4r; this corresponds to early times for the high-frequency case.
There is less than 7% difference between x and 3a in this span of time. We recall that
the roots of the cubic and quartic are given by

~2 + ( e + 1 = 0 (54)

for e << 1 and » >> e. This equation is the same one we would obtain using an infinite-
plate model to approximate the fluid loading on the sphere.* Thus, the plate model is
adequate for early times in the high-frequency case but fails to give a good representation
for early times in the low-frequency case.

We note that the added mass effect will be negligible for e(m,/m) << 1 and the
frequency will be close to that of the oscillator in vacuo. Furthermore, the decay con-
stant will decrease with increasing frequency, as we see from

1 [(m.) {() 
~1 2 m E ± 4- (55)

In effect, the impedance of the oscillator in vacuo is much greater than that due to the
presence of the fluid, so that the oscillator doesn't."see" the fluid as we increase the
frequency.

ASYMPTOTIC FORMS OF CONVOLUTION INTEGRAL

Now, Junger and Thompson (p. 2) have pointed out that, for a body of finite size,
the surface pressure due to impulsive motion has a period proportional to the time it
takes a creeping wave to pass around the body; the surface pressure is damped by the
radiation of sound energy away from the body. In the case of the sphere, the decay
constant for this damping equals the frequency of the impulsive pressure.

For the low-frequency (e >> 1), late time case, the pressure wave due to impulsive
motion has been attenuated greatly by the time the oscillator begins to respond, so that
the oscillator "sees" a kind of impulse at t = 0 due to the surface pressure. We can
illustrate this graphically, as shown in Fig. 11. Since both X(t) and X0 (t) have the im-
pulse behavior, the fine details of the difference between them are immaterial to a low-
frequency oscillator, so that we have

t t
f X(t - T) i(T) dT = rX(t- T) i(T) d, X ((x 1>> oo) (56)
,r=O JT=O

and so xi(t) = x(t) for late times.

For the high-frequency case (c << coo), the pressure wave has not been attenuated
significantly at early times, and cos w1 t _ 1; hence, X(t) looks like a Heaviside step func-
tion to the oscillator, as shown in Fig. 12. We can say that, for early times,

*True, providing we set the plate area equal to 4/3 the projected area of the sphere.

18
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f~~~~~t)\/~~~~~~' M X= sin Gotft )
I :K (t) A: a ' "Cos s t

Fig. 11-Values of X(t) and x(t) for the low-frequency, late
time case (o 1 > > o; XQ > > Xe ) (not to scale)

-utzc-- -wIt

I)

Fig. 12-Values of X(t) and x(t) for the high-frequency, early
time case ci << wo; Xe >> xl) (not to scale)

f X(t- ) X(T) d = t
T=o=0

pcA X
(57)

which will give us a viscous damping term in our equation of motion.

DIFFERENTIAL EQUATION APPROACH

We can easily derive further interesting properties of X(t) and Xa(t). Let us recall
that

and, since

X(g) m, L [ + e 21
L(g + )2 + e 

we rewrite this as

(S2 + 2es + 2e2) F (s) = [(a3 + eg2 )x(a) (aw)] e

which is equivalent to the differential equation

f(t)

(58)

-

1
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(e) (G ~M;) ((t) + 2eF(t) + 2e2Ff(t)) = (t) + e(t). (59)

This is one of the approximations which has been proposed for fluid-structural decoupling.
We find that this approximate equation for determining the fluid force Ff is the exact
solution for an oscillating sphere.

If we now use the approximate form Xa(S), we have

(s+ 2e)F (R = (m) es'X(s) (60)

or

Ff(t) + 2eFf(t) = (-m) e(t). (61)

This turns out to be the exact solution for a breathing sphere; Geers (p. 3) proposed a three-
dimensional extension of this to decouple the fluid-structure interaction.

CONCLUSIONS

The exact and approximate solutions x(t) and xa(t) are derived from roots of the
quartic (Eq. (23)) and cubic (Eq. (42)) equations, respectively. For high and low fre-
quencies, good approximations to these roots can be obtained by using asymptotic values
of s as defined in Table 1. This table gives a systematic way of defining the magnitude
of s, rather than saying that s is "small" or "large."

For high frequencies ( e << 1), the exact solution consists of two decaying sinusoids.
As e decreases, the effect of the fluid on the oscillator becomes less, as evidenced by de-
creasing decay constants; the period of the oscillator approaches that in vacuo. Decreasing
e increases the early time domain; maximum oscillator excursions occur there.

The intermediate- (e = 1) and low-frequency (e >> 1) cases have exact solutions con-
sisting of early time decaying exponentials and a late time damped sinusoid. For e in-
creasing, fluid effects increase, causing increasing decay of the early time solution; in-
creasing e also increases added mass effects, which increases the period of the late time
solution and decreases its damping. Little energy is lost to the fluid through radiation
damping, and maximum oscillator excursions occur at late times. Theories which attempt
to predict early time behavior on the basis of radiation damping (flat-plate model) will be
seriously in error. Increasing e causes the early time domain to shrink.

In Appendix A, we show how to generate an approximation to X(t); this is used to
derive an approximate equation of motion. The approximate solution xa(t) is found to
be in good agreement with the exact solution for (a) the high-frequency case at early
times, (b) the low-frequency case at late times. This can be explained by noting that
X (s) and X1a(s) have the same asymptotic form in these cases. For case (a), X(t) and Xa(t)
are effectively Heaviside step functions; for case (b), they act as delta functions.

The impulsive pressure X(t) can be related to the fluid force and various derivatives
of x via a differential equation approach; some of the differential equations have been
proposed in the literature as fluid-structural decoupling approximations.

20
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It is anticipated that we can define an "equivalent sphere" for more complicated
exposed submarine appendages. Should this be the case, we have the impulse response
for the submerged appendage accounting for radiation loading. From this impulse re-
sponse, we can, in theory, construct the appendage response to any kind of mechanical
or fluid loading.



Appendix A

APPROXIMATION TO HYDRODYNAMIC FUNCTION X(t)

We wish to show the reasons we must demand that

lim X(s) = ma;
s-*0

lim s\(s) = pc i 02 (r) do,
5 -00 

a

with w(r, t) = x(t) ¢(r). To prove the first assertion, we return to the Helmholtz integral
equation

1 
-~ P (r, s) -

gP(ro,s)
JJ 47r
Oro

a LexPc)!r- rOl]
ano r - rol

if i3(r, S) exp(!,)Ir- rl
f 47r Ir- rol a

00

and set s -~ 0. Then we have a solution to the integral equation which states that

P(r, s) = ff H(r, r ; 0) s 2 Fw (ro, s) dco .
00

(Al)

We note that H(r, ro; 0) has dimensions of mass/(length) 4 . If our fluid were incompres-
sible, or if we had low-frequency oscillations, then

P(r, t) = f H(r, r, 0) x(t) (ro) a,
0o

(A2)

which can be rewritten as

P(r, t) = z(r, 0) x'(t) . (A3)

This gives rise to a force on the oscillator body

(A4)Ff(t) = - if P(r, t) (r) a = -maxc(t),
0
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Appendix B

TABLES OF CONSTANTS USED IN EXACT
AND APPROXIMATE SOLUTIONS

Table B1
Roots of Quartic Equation (mw/m = 2.5)

S1,2
S3,4

S1,2
S3,4

83,4

Value of e Roots~~~~~
0.01

0.10

1.0

10.0

100.0 S31

'93, 4

= -0.0125 ± 0.9998i
= -0.0100 ± 0.OlOOi

= -0.125 ± 0.979i
= -0.100 ± 0.1026i

= -2.0; 82 = -2.462
= -0.0191 ± 0.637i

i = -15.037, S2 = -29.963
83,4 = -0.000 ± 0,667i

= -150, 82 = -300
= -0.000 ± 0.667i

Table B2
Roots of Cubic Equation (m,/m = 2.5)

Value of e | Roots

0.01 s1,2 = -0.012 ± 1.00i
i3 = -0.020

0.10 h1,2 = -0.120 ± 0.967i
83 = -0.211

1.0 s1 = -4.376
82,3 = -0.062 ± 0.637i

10.0 si = -44.998
82,3 = -0.006 ± 0.667i

.100.0 s1 = -450.0
82,3 = -0.001 ± 0.667i
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Table B3
Constants for High-Frequency Solution

S2 = a - ib,

S4 = 3 - ib3

sl = a1 + ib 1 ;

S3 = a3 + ib 3 ;

U3 = a3 + e

F3 = 3 2 + - b3
2

G3 = 2a 3 b3

A1 = a1 - a3

B1 = b, + b3

01 = b3 - b ,

H1 = A1
2 - B 1

J, = B + 
Ml = (A 2 + 1

2 ) (A1
2 + B1

2 )

Q3 = (F3H1 - A1 G3J1 )/Ml Q4 = (G3 H1 + A1 F 3J 1 )

Table B4
Coefficients for Intermediate- and

Low-Frequency Solutions

S= al
S2 =a2

S3 = a3 + ib 3

S4 = a3 - ib3

H1 2 = A1A 2 - b3
2

A1 2 = A1 + A2

q = (F3H1 2 - G3 b3Al2 )/(A1
2 + b3

2 )(A2
2 + b3

2 )
h = (G3H1 2 + b3Al2F3)/(A12 + b3

2)(A2
2 + b3

2 )

(For definitions of F3 , G3 , A1 , A2 , etc., see Table B3.)

*U.S. GOVERNMENT PRINTING OFFICE: 1974 542-169/Z-198 1-3

al
F1

G,

A 3

B3

P3
H3

J3

M3

Q1

Q2

= a + 
= al2 + 2 - b2
= 2°lb,

= a3 - a1

= b3 + b,
= b - b3

= A3 2 - B3 3

= B3 + 3

= (A32 + 3 2 )(A 3
2 + B 3

2 )

= (F1H3 - A3 G1 J3 )/M3

= (G1H3 + F1A3 J3 )
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